Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 337: 122341, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101613

RESUMO

Since DNA damage can occur spontaneously or be produced by the environmental genotoxins in living cells, it is important to investigate compounds that can reverse or protect DNA damage. An appropriate methodology is essential for the responsive identification of protection offered against DNA damage. This review includes information on the current state of knowledge on prokaryotic cell-based assays (SOS chromotest, umu test, vitotox assay) and cytogenetic techniques (micronucleus assay, chromosome aberration test and sister chromatid exchange assay) with an emphasis on the possibility to explore genoprotective compounds. Throughout the last decade, studies have extrapolated the scientific methodologies utilized for genotoxicity to assess genoprotective compounds. Therefore, shortcomings of genotoxicity studies are also mirrored in antigenotoxicity studies. While regulatory authorities around the world (OECD, US-EPA and ICH) continue to update diverse genotoxic assay strategies, there are still no clear guidelines/approaches for efficient experimental design to screen genoprotective compounds. As a consequence, non-synergetic and inconsistent implementation of the test method by the researchers to execute such simulations has been adopted, which inevitably results in unreliable findings. The review has made the first attempt to collect various facets of experimentally verified approaches for evaluating genoprotective compounds, as well as to acknowledge potential significance and constraints, and further focus on the assessment of end points which are required to validate such action. Henceforth, the review makes an incredible commitment by permitting readers to equate several components of their test arrangement with the provided simplified information, allowing the selection of convenient technique for the predefined compound from a central repository.


Assuntos
Dano ao DNA , Mutagênicos , Humanos , Testes de Mutagenicidade/métodos , Mutagênicos/toxicidade , Testes para Micronúcleos , Aberrações Cromossômicas
2.
Drug Deliv Transl Res ; 13(3): 852-861, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36253518

RESUMO

This study is aimed to fabricate tetanus toxoid laden microneedle patches by using a polymeric blend comprising of polyvinyl pyrrolidone and sodium carboxymethyl cellulose as base materials and sorbitol as a plasticizer. The tetanus toxoid was mixed with polymeric blend and patches were prepared by using vacuum micromolding technique. Microneedle patches were evaluated for physical attributes such as uniformity of thickness, folding endurance, and swelling profile. Morphological features were assessed by optical and scanning electron microscopy. In vitro performance of fabricated patches was studied by using bicinchoninic acid assay (BCA). Insertion ability of microstructures was studied in vitro on model skin parafilm and in vivo in albino rat. In vivo immunogenic activity of the formulation was assessed by recording immunoglobulin G (IgG) levels, interferon gamma (IFN-γ) levels, and T-cell (CD4+ and CD8+) count following the application of dosage forms. Prepared patches, displaying sharp-tipped and smooth-surfaced microstructures, remained intact after 350 ± 36 foldings. Optimized microneedle patch formulation showed ~ 74% swelling and ~ 85.6% vaccine release within an hour. The microneedles successfully pierced parafilm. Histological examination of microneedle-treated rat skin confirmed disruption of epidermis without damaging the underneath vasculature. A significant increase in IgG levels (~ 21%), IFN-γ levels (~ 30%), CD4+ (~ 41.5%), and CD8+ (~ 48.5%) cell count was observed in tetanus vaccine-loaded microneedle patches treated albino rats with respect to control (untreated) group at 42nd day of immunization. In conclusion, tetanus toxoid-loaded microneedle patches can be considered as an efficient choice for transdermal delivery of vaccine without inducing pain commonly experienced with hypodermic needles.


Assuntos
Parafina , Toxoide Tetânico , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Imunoglobulina G , Agulhas , Polímeros/química , Adesivo Transdérmico , Animais , Ratos
3.
Nanomaterials (Basel) ; 12(12)2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35745355

RESUMO

Mesoporous Silica Nanoparticles (MSNs) have received increasing attention in biomedical applications due to their tuneable pore size, surface area, size, surface chemistry, and thermal stability. The biocompatibility of MSNs, although generally believed to be satisfactory, is unclear. Physicochemical properties of MSNs, such as diameter size, morphology, and surface charge, control their biological interactions and toxicity. Experimental conditions also play an essential role in influencing toxicological results. Therefore, the present study includes studies from the last five years to statistically analyse the effect of various physicochemical features on MSN-induced in-vitro cytotoxicity profiles. Due to non-normally distributed data and the presence of outliers, a Kruskal-Wallis H test was conducted on different physicochemical characteristics, including diameter sizes, zeta-potential measurements, and functionalisation of MSNs, based on the viability results, and statistical differences were obtained. Subsequently, pairwise comparisons were performed using Dunn's procedure with a Bonferroni correction for multiple comparisons. Other experimental parameters, such as type of cell line used, cell viability measurement assay, and incubation time, were also explored and analysed for statistically significant results.

4.
Nanomedicine (Lond) ; 17(26): 2011-2021, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36853189

RESUMO

Aim: To quantitatively evaluate the inhibition of human DNA repair proteins APE1 and MTH1 by dextran-coated γ-Fe2O3 ultrasmall superparamagnetic iron oxide nanoparticles (dUSPIONs). Materials & methods: Liquid chromatography-tandem mass spectrometry with isotope-dilution was used to measure the expression levels of APE1 and MTH1 in MCL-5 cells exposed to increasing doses of dUSPIONs. The expression levels of APE1 and MTH1 were measured in cytoplasmic and nuclear fractions of cell extracts. Results: APE1 and MTH1 expression was significantly inhibited in both cell fractions at the highest dUSPION dose. The expression of MTH1 was linearly inhibited across the full dUSPION dose range in both fractions. Conclusion: These findings warrant further studies to characterize the capacity of dUSPIONs to inhibit other DNA repair proteins in vitro and in vivo.


Inhibitors of DNA repair proteins are increasingly being utilized as potential anticancer agents to supplement traditional chemotherapy and radiation-based approaches. The present study was focused on investigating the use of iron oxide nanoparticles to inhibit the expression of relevant human DNA repair proteins in a cellular model (MCL-5 cells). The authors utilized liquid chromatography­tandem mass spectrometry with isotope dilution to measure the expression levels of two different DNA repair proteins (MTH1 and APE1) in cells after the cells were exposed to increasing levels of the iron oxide nanoparticles. The authors observed significant decreases in DNA repair protein levels that were associated with increasing doses of the iron oxide nanoparticles. The authors' findings warrant more comprehensive studies using other cellular models and suitable animal models.


Assuntos
Dextranos , Nanopartículas Magnéticas de Óxido de Ferro , Humanos , Reparo do DNA
5.
Adv Drug Deliv Rev ; 176: 113788, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33957180

RESUMO

Electrohydrodynamic atomisation (EHDA) technologies have evolved significantly over the past decade; branching into several established and emerging healthcare remits through timely advances in the engineering sciences and tailored conceptual process designs. More specifically for pharmaceutical and drug delivery spheres, electrospraying (ES) has presented itself as a high value technique enabling a plethora of different particulate structures. However, when coupled with novel formulations (e.g. co-flows) and innovative device aspects (e.g., materials and dimensions), core characteristics of particulates are manipulated and engineered specifically to deliver an application driven need, which is currently lacking, ranging from imaging and targeted delivery to controlled release and sensing. This demonstrates the holistic nature of these emerging technologies; which is often overlooked. Parametric driven control during particle engineering via the ES method yields opportunistic properties when compared to conventional methods, albeit at ambient conditions (e.g., temperature and pressure), making this extremely valuable for sensitive biologics and molecules of interest. Furthermore, several processing (e.g., flow rate, applied voltage and working distance) and solution (e.g., polymer concentration, electrical conductivity and surface tension) parameters impact ES modes and greatly influence the production of resulting particles. The formation of a steady cone-jet and subsequent atomisation during ES fabricates particles demonstrating monodispersity (or near monodispersed), narrow particle size distributions and smooth or textured morphologies; all of which are successfully incorporated in a one-step process. By following a controlled ES regime, tailored particles with various intricate structures (hollow microspheres, nanocups, Janus and cell-mimicking nanoparticles) can also be engineered through process head modifications central to the ES technique (single-needle spraying, coaxial, multi-needle and needleless approaches). Thus, intricate formulation design, set-up and combinatorial engineering of the EHDA process delivers particulate structures with a multitude of applications in tissue engineering, theranostics, bioresponsive systems as well as drug dosage forms for specific delivery to diseased or target tissues. This advanced technology has great potential to be implemented commercially, particularly on the industrial scale for several unmet pharmaceutical and medical challenges and needs. This review focuses on key seminal developments, ending with future perspectives addressing obstacles that need to be addressed for future advancement.


Assuntos
Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Tecnologia Farmacêutica/métodos , Animais , Condutividade Elétrica , Eletroquímica , Humanos , Hidrodinâmica , Tamanho da Partícula , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Polímeros/química
6.
Eur J Pharm Biopharm ; 156: 20-39, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32871196

RESUMO

The research presented here shows QbD implementation for the optimisation of the key process parameters in electrohydrodynamic atomisation (EHDA). Here, the electrosprayed nanoparticles and electrospun fibers consisting of a polymeric matrix and dye. Eight formulations were assessed consisting of 5% w/v of polycaprolactone (PCL) in dichloromethane (DCM) and 5% w/v polyvinylpyrrolidone (PVP) in ethanol. A full factorial DOE was used to assess the various parameters (applied voltage, deposition distance, flow rate). Further particle and fiber analysis using Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FTIR), particle/fiber size distribution. In addition to this in vitro release studied were carried out using fluorescein and Rhodamine B as model dyes and in vitro permeation studies were applied. The results show a significant difference in the morphology of resultant structures as well as a more rapid release profile for the PVP particles and fibers in comparison to the sustained release profiles found with PCL. In vitro drug release studies showed 100% drug release after 7 days for PCL particles and showed 100% drug release within 120 min for PVP particles. The release kinetics and the permeation study showed that the MN successfully pierced the membrane and the electrospun MN coating released a large amount of the loaded drug within 6 h. This study has demonstrated the capability of these robust MNs to encapsulate a diverse range drugs within a polymeric matrix giving rise to the potential of developed personalised medical devices.


Assuntos
Microinjeções/instrumentação , Agulhas , Polímeros/química , Pesquisa Qualitativa , Tecnologia Farmacêutica/instrumentação , Liberação Controlada de Fármacos , Microinjeções/normas , Agulhas/normas , Poliésteres/química , Poliésteres/normas , Polímeros/normas , Povidona/química , Povidona/normas , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Tecnologia Farmacêutica/normas
7.
Drug Discov Today ; 25(8): 1513-1520, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32561300

RESUMO

Recently, remarkable efforts have focused on research towards enhancing and delivering efficacious and advanced therapeutic agents. Even though this involves significant challenges, innovative techniques and materials have been explored to overcome these. The advantageous properties of mesoporous silica nanoparticles (MSNs), such as unique morphologies and geometries, makes then favorable for use for various drug delivery targeting purposes, particularly in cancer therapy. As we discuss here, MSNs have been utilized over the past few decades to improve the efficiency of anticancer drugs by enhancing their solubility to render them suitable for application, reducing adverse effects, and improving their anticancer cytotoxic efficiency.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Dióxido de Silício/administração & dosagem , Animais , Humanos , Porosidade
8.
Pharmaceutics ; 12(1)2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31861296

RESUMO

The purpose of this study was to apply the Quality by Design (QbD) approach to the electrospinning of fibres loaded with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin (INDO) and diclofenac sodium (DICLO). A Quality Target Product Profile (QTPP) was made, and risk assessments (preliminary hazard analysis) were conducted to identify the impact of material attributes and process parameters on the critical quality attributes (CQAs) of the fibres. A full factorial design of experiments (DoE) of 20 runs was built, which was used to carry out experiments. The following factors were assessed: Drugs, voltage, flow rate, and the distance between the processing needle and collector. Release studies exhibited INDO fibres had greater total release of active drug compared to DICLO fibres. Voltage and distance were found to be the most significant factors of the experiment. Multivariate statistical analytical software helped to build six feasible design spaces and two flexible, universal design spaces for both drugs, at distances of 5 cm and 12.5 cm, along with a flexible control strategy. The current findings and their analysis confirm that QbD is a viable and invaluable tool to enhance product and process understanding of electrospinning for the assurance of high-quality fibres.

9.
Part Fibre Toxicol ; 16(1): 8, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760282

RESUMO

BACKGROUND: It is well established that toxicological evaluation of engineered nanomaterials (NMs) is vital to ensure the health and safety of those exposed to them. Further, there is a distinct need for the development of advanced physiologically relevant in vitro techniques for NM hazard prediction due to the limited predictive power of current in vitro models and the unsustainability of conducting nano-safety evaluations in vivo. Thus, the purpose of this study was to develop alternative in vitro approaches to assess the potential of NMs to induce genotoxicity by secondary mechanisms. RESULTS: This was first undertaken by a conditioned media-based technique, whereby cell culture media was transferred from differentiated THP-1 (dTHP-1) macrophages treated with γ-Fe2O3 or Fe3O4 superparamagnetic iron oxide nanoparticles (SPIONs) to the bronchial cell line 16HBE14o-. Secondly construction and SPION treatment of a co-culture model comprising of 16HBE14o- cells and dTHP-1 macrophages. For both of these approaches no cytotoxicity was detected and chromosomal damage was evaluated by the in vitro micronucleus assay. Genotoxicity assessment was also performed using 16HBE14o- monocultures, which demonstrated only γ-Fe2O3 nanoparticles to be capable of inducing chromosomal damage. In contrast, immune cell conditioned media and dual cell co-culture SPION treatments showed both SPION types to be genotoxic to 16HBE14o- cells due to secondary genotoxicity promoted by SPION-immune cell interaction. CONCLUSIONS: The findings of the present study demonstrate that the approach of using single in vitro cell test systems precludes the ability to consider secondary genotoxic mechanisms. Consequently, the use of multi-cell type models is preferable as they better mimic the in vivo environment and thus offer the potential to enhance understanding and detection of a wider breadth of potential damage induced by NMs.


Assuntos
Dano ao DNA , Compostos Férricos/toxicidade , Nanopartículas de Magnetita/toxicidade , Testes de Mutagenicidade/métodos , Brônquios/efeitos dos fármacos , Brônquios/imunologia , Brônquios/patologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Endocitose/efeitos dos fármacos , Humanos , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Células THP-1
10.
J Pharm Sci ; 108(4): 1540-1551, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30513319

RESUMO

This article reports on electrohydrodynamic atomization to engineer on-demand novel coatings for ocular contact lenses. A formulation approach was adopted to modulate the release of timolol maleate (TM) using chitosan and borneol. Polymers polyvinylpyrrolidone and poly (N-isopropylacrylamide) were utilized to encapsulate TM and were electrically atomized to produce optimized, stationary contact lens coatings. The particle and fiber diameter, thermal stability, material compatibility of the formed coatings, their in vitro release-modulating effect, and ocular tolerability were investigated. Results demonstrated highly stable nanomatrices with advantageous morphology and size. All formulations yielded coatings with high TM encapsulation (>88%) and excellent ocular biocompatibility. Coatings yielded biphasic and triphasic release, depending on composition. Kinetic modeling revealed a noticeable effect of chitosan; the higher the concentration, the more the release of TM because of chitosan swelling, with the mechanism changing from Fickian diffusion (1% w/v; n = 0.5) to non-Fickian (5% w/v, 0.45

Assuntos
Anti-Hipertensivos/administração & dosagem , Lentes de Contato , Composição de Medicamentos/métodos , Glaucoma/tratamento farmacológico , Timolol/administração & dosagem , Administração Oftálmica , Animais , Bovinos , Engenharia Química , Química Farmacêutica , Quitosana/química , Córnea/efeitos dos fármacos , Humanos , Nanopartículas/química , Tamanho da Partícula
11.
Artigo em Inglês | MEDLINE | ID: mdl-30173862

RESUMO

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Fígado/patologia , Testes de Mutagenicidade/métodos , Mutagênicos/efeitos adversos , Esferoides Celulares/patologia , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/metabolismo , Células Hep G2 , Humanos , Fígado/efeitos dos fármacos , Testes para Micronúcleos
12.
J Control Release ; 278: 142-155, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29605567

RESUMO

Encapsulation of poorly water-soluble drugs into mesoporous materials (e.g. silica) has evolved as a favorable strategy to improve drug solubility and bioavailability. Several techniques (e.g. spray drying, solvent evaporation, microwave irradiation) have been utilized for the encapsulation of active pharmaceutical ingredients (APIs) into inorganic porous matrices. In the present work, a novel chalcone (KAZ3) with anticancer properties was successfully synthesized by Claisen-Schmidt condensation. KAZ3 was loaded into mesoporous (SBA-15 and MCM-41) and non-porous (fumed silica, FS) materials via two techniques; electrohydrodynamic atomization (EHDA) and solvent impregnation. The effect of both loading methods on the physicochemical properties of the particles (e.g. size, charge, entrapment efficiency, crystallinity, dissolution and permeability) was investigated. Results indicated that EHDA technique can load the active in a complete amorphous form within the pores of the silica particles. In contrast, reduced crystallinity (~79%) was obtained for the solvent impregnated formulations. EHDA engineered formulations significantly improved drug dissolution up to 30-fold, compared to the crystalline drug. Ex vivo studies showed EHDA formulations to exhibit higher permeability across rat intestine than their solvent impregnated counterparts. Cytocompatibility studies on Caco-2 cells demonstrated moderate toxicity at high concentrations of the anticancer agent. The findings of the present study clearly show the immense potential of EHDA as a loading technique for mesoporous materials to produce poorly water-soluble API carriers of high payload at ambient conditions. Furthermore, the scale up potential in EHDA technologies indicate a viable route to enhance drug encapsulation and dissolution rate of loaded porous inorganic materials.


Assuntos
Antineoplásicos/administração & dosagem , Química Farmacêutica/métodos , Portadores de Fármacos/química , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Células CACO-2 , Cristalização , Liberação Controlada de Fármacos , Humanos , Absorção Intestinal , Masculino , Porosidade , Ratos , Ratos Wistar , Dióxido de Silício/química , Solubilidade , Solventes/química , Tecnologia Farmacêutica/métodos , Água/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-29307375

RESUMO

The liver's role in metabolism of chemicals makes it an appropriate tissue for toxicity testing. Current testing protocols, such as animal testing and two-dimensional liver cell systems, offer limited resemblance to in vivo liver cell behaviour, in terms of gene expression profiles and metabolic competence; thus, they do not always accurately predict human toxicology. In vitro three-dimensional liver cell models offer an attractive alternative. This study reports on the development of a 3D liver model, using HepG2 cells, by a hanging-drop technique, with a focus on evaluating spheroid growth characteristics and suitability for genotoxicity testing. The cytokinesis-blocked micronucleus assay protocol was adapted to enable micronucleus (MN) detection in the 3D spheroid models. This involved evaluating the difference between hanging vs non-hanging drop positions for dosing of the test agents and comparison of automated Metafer scoring with manual scoring for MN detection in HepG2 spheroids. The initial seeding density, used for all experiments, was 5000 cells/20 µl drop hanging spheroids, harvested on day 4, with >75% cell viability. Albumin secretion (7.8 g/l) and both CYP1A1 and CYP1A2 gene expression were highest in the 3D environment at day 4. Exposure to metabolically activated genotoxicants for 24 h resulted in a 6-fold increase in CYP1A1 enzyme activity (3 µM B[a]P) and a 30-fold increase in CYP1A2 enzyme activity (5 µM PhIP) in 3D hanging spheroids. MN inductions in response to B[a]P or PhIP were 2-fold and 3-fold, respectively, and were greater in 3D hanging spheroids than in 2D format, showing that hanging spheroids are more sensitive to genotoxic agents. HepG2 hanging-drop spheroids are an exciting new alternative system for genotoxicity studies, due to their improved structural and physiological properties, relative to 2D cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Modelos Biológicos , Esferoides Celulares/citologia , Células Tumorais Cultivadas/citologia , Sobrevivência Celular , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2 , Citocinese , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Testes de Mutagenicidade , Albumina Sérica Humana/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas/metabolismo
14.
Int J Mol Sci ; 18(7)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703770

RESUMO

Some engineered nanomaterials (ENMs) may have the potential to cause damage to the genetic material in living systems. The mechanistic machinery functioning at the cellular/molecular level, in the form of DNA repair processes, has evolved to help circumvent DNA damage caused by exposure to a variety of foreign substances. Recent studies have contributed to our understanding of the various DNA damage repair pathways involved in the processing of DNA damage. However, the vast array of ENMs may present a relatively new challenge to the integrity of the human genome; therefore, the potential hazard posed by some ENMs necessitates the evaluation and understanding of ENM-induced DNA damage repair pathways. This review focuses on recent studies highlighting the differential regulation of DNA repair pathways, in response to a variety of ENMs, and discusses the various factors that dictate aberrant repair processes, including intracellular signalling, spatial interactions and ENM-specific responses.


Assuntos
Reparo do DNA , Nanoestruturas/química , Nanotecnologia/métodos , Animais , Dano ao DNA , Reparo do DNA/genética , Regulação da Expressão Gênica , Humanos , Transdução de Sinais/genética
15.
Mutagenesis ; 32(1): 215-232, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27565834

RESUMO

The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided.


Assuntos
Dano ao DNA , Ensaios de Triagem em Larga Escala/métodos , Testes de Mutagenicidade/métodos , Nanoestruturas/toxicidade , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , DNA/efeitos dos fármacos , Humanos
16.
Mutagenesis ; 32(1): 233-241, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27815329

RESUMO

With the need to understand the potential biological impact of the plethora of nanoparticles (NPs) being manufactured for a wide range of potential human applications, due to their inevitable human exposure, research activities in the field of NP toxicology has grown exponentially over the last decade. Whilst such increased research efforts have elucidated an increasingly significant knowledge base pertaining to the potential human health hazard posed by NPs, understanding regarding the possibility for NPs to elicit genotoxicity is limited. In vivo models are unable to adequately discriminate between the specific modes of action associated with the onset of genotoxicity. Additionally, in line with the recent European directives, there is an inherent need to move away from invasive animal testing strategies. Thus, in vitro systems are an important tool for expanding our mechanistic insight into NP genotoxicity. Yet uncertainty remains concerning their validity and specificity for this purpose due to the unique challenges presented when correlating NP behaviour in vitro and in vivo This review therefore highlights the current state of the art in advanced in vitro systems and their specific advantages and disadvantages from a NP genotoxicity testing perspective. Key indicators will be given related to how these systems might be used or improved to enhance understanding of NP genotoxicity.


Assuntos
Dano ao DNA , Testes de Mutagenicidade/métodos , Nanopartículas/toxicidade , Animais , DNA/efeitos dos fármacos , Humanos
17.
ACS Nano ; 8(7): 6693-700, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24923782

RESUMO

Understanding the effect of variability in the interaction of individual cells with nanoparticles on the overall response of the cell population to a nanoagent is a fundamental challenge in bionanotechnology. Here, we show that the technique of time-resolved, high-throughput microscopy can be used in this endeavor. Mass measurement with single-cell resolution provides statistically robust assessments of cell heterogeneity, while the addition of a temporal element allows assessment of separate processes leading to deconvolution of the effects of particle supply and biological response. We provide a specific demonstration of the approach, in vitro, through time-resolved measurement of fibroblast cell (HFF-1) death caused by exposure to cationic nanoparticles. The results show that heterogeneity in cell area is the major source of variability with area-dependent nanoparticle capture rates determining the time of cell death and hence the form of the exposure­response characteristic. Moreover, due to the particulate nature of the nanoparticle suspension, there is a reduction in the particle concentration over the course of the experiment, eventually causing saturation in the level of measured biological outcome. A generalized mathematical description of the system is proposed, based on a simple model of particle depletion from a finite supply reservoir. This captures the essential aspects of the nanoparticle­cell interaction dynamics and accurately predicts the population exposure­response curves from individual cell heterogeneity distributions.


Assuntos
Nanopartículas/toxicidade , Transporte Biológico , Morte Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanopartículas/metabolismo , Fatores de Tempo
18.
Methods Mol Biol ; 1044: 269-89, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23896882

RESUMO

The in vitro micronucleus assay is currently one of the most commonly used test systems for the study of genotoxic effects of chemicals. It is considered the preferred method for measuring chromosome damage as it allows the determination of both chromosomal loss and breakage. The type of chromosomal damage induced can be distinguished by using the kinetochore or pan-centromeric staining using molecular probes that label the centromeric regions of chromosomes allowing the determination of aneugenic (chromosome loss) or clastogenic (chromosome breakage) agents. In this chapter, we provide a description of the basic principles and methods of the in vitro micronucleus assay with detailed explanations of the scoring criteria for the genotoxicity and cytotoxicity end-points by manual or automated analysis.


Assuntos
Citotoxinas/toxicidade , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Testes para Micronúcleos/métodos , Coloração e Rotulagem/métodos , Linhagem Celular , Humanos , Testes para Micronúcleos/normas , Imagem Molecular
19.
Biomaterials ; 33(1): 163-70, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22027595

RESUMO

Ultrafine superparamagnetic iron oxide nanoparticles (USPION) hold great potential for revolutionising biomedical applications such as MRI, localised hyperthermia, and targeted drug delivery. Though evidence is increasing regarding the influence of nanoparticle physico-chemical features on toxicity, data however, is lacking that assesses a range of such characteristics in parallel. We show that iron redox state, a subtle though important physico-chemical feature of USPION, dramatically modifies the cellular uptake of these nanoparticles and influences their induction of DNA damage. Surface chemistry was also found to have an impact and evidence to support a potential mechanism of oxidative DNA damage behind the observed responses has been demonstrated. As human exposure to ferrofluids is predicted to increase through nanomedicine based therapeutics, these findings are important in guiding the fabrication of USPION to ensure they have characteristics that support biocompatibility.


Assuntos
Compostos Férricos/química , Nanopartículas de Magnetita/química , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Compostos Férricos/efeitos adversos , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Nanopartículas de Magnetita/efeitos adversos , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia Fotoeletrônica
20.
Anal Chem ; 83(10): 3778-85, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21469681

RESUMO

Due to the unique physicochemical properties of nanomaterials (NM) and their unknown reactivity, the possibility of NM altering the optical properties of fluorometric/colorimetric probes that are used to measure their cyto- and genotoxicity may lead to inaccurate readings. This could have potential implications given that NM, such as ultrafine superparamagnetic iron oxide nanoparticles (USPION), are increasingly finding their use in nanomedicine and the absorbance/fluorescence based assays are used to assess their toxicity. This study looks at the potential of dextran-coated USPION (dUSPION) (maghemite and magnetite) to alter the background signal of common probes used for evaluating cytotoxicity (MTS, CyQUANT, Calcein, and EthD-1) and oxidative stress (DCFH-DA and APF). In the present study, both forms of dUSPION caused an increase in MTS signal but a decrease in background signal from calcein and 3'-(p-aminophenyl) fluorescein (APF) and no effect on CyQUANT and EthD-1 fluorescence responses. Magnetite caused a decrease in fluorescence signal of DCFH, but it did not decrease fluorescence signal in the presence of the reactive oxygen species-inducer tert-butyl hydroperoxide (TBHP). In contrast, maghemite caused an increase in fluorescence, which was substantially reduced in the presence of the antioxidant N-acetyl cysteine. This study emphasizes the importance of considering and controlling for possible interactions between NM and fluorometric/colorimetric dyes and, most importantly, the oxidation state of dUSPION that may confound their sensitivity and specificity.


Assuntos
Colorimetria/métodos , Corantes/química , Dextranos/química , Compostos Férricos/química , Corantes Fluorescentes/química , Fluorometria/métodos , Nanopartículas de Magnetita/química , Etídio/análogos & derivados , Etídio/toxicidade , Fluoresceínas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , terc-Butil Hidroperóxido/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...